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Abstract—Dyadic Green's functions (DGFs) and their scat- of varying current distribution with the space distance that is lo-
tering coefficients are formulated in this paper for defining the cated at infinity. When the source is located inside an interme-
electromagnetic fields in multilayered -spheroidal structures.  giate region of stratified spheroidal structure, the multiple scat-
The principle of scattering superposition is applied. In a similar LS L .
form of the DGF in an unbounded medium under spheroidal tering |5|nvqlved and the_ wave modesm&dethe_reglon becor_ne
coordinates, the scattering DGFs due to multiple spheroidal More complicated. In this sense, the EM radiation problem is
interfaces are expanded in terms of the spheroidal vector wave more general as compared with the EM scattering problems.
functions. For the lack of general orthogonality of the spheroidal  To analyze EM radiated fields in spheroidal geometries, the
radial and angular functions, the Green’s dyadics are expressed dyadic Green’s function (DGF) technique provides a straight-

in a different way where the coordinate unit vectors are also f d The DGFEs i . tri h inal
combined in the construction, as compared with the conventional orward way. the S In various geometries such as singie

form of vector wave eigenfunction expansion. The matrix equation Stratified planar, cylindrical, and spherical structures were
systems satisfied by the coupled scattering (i.e., reflection and formulated [6], [7]. In multilayered geometries, the DGFs have

transmission) coefficients of the DGFs are obtained so that these a|so been constructed and their coefficients derived. Usually, two
coefficients can be solved uniquely. The DGFs can be employed totypes of DGFs, i.e., the EM DGFs and the Hertzian vector poten-

investigate effects of spheroidal radomes used to protect the air- : . .
borne or satellite antenna systems and of handy phone radiation tial DGFs, were expressed. Three methods that are available in

near the spheroid-shaped human head, and so forth. Numerical the literature, i.e., the Fourier transform teChnique (norma”y in
calculations about the applications of the formulated multilayered planar structures only), wave matrix operator, and/or transmis-

DGFs will be presented in part Il of this paper. sion line (frequently in planar structures) methods, and vector
Index Terms—Antenna radiation, dyadic Green's function, Wave eigenfunction expansion method (in regular structures
electromagnetic-wave theory, spheroidal wave functions, stratified where vector wave functions are orthogonal) were developed.
media. In a planar stratified geometry [6], Lee and Kong [8]
employed Fourier transform to deduce the DGFs in an
anisotropic medium, Sphicopoulost al. [9] used an oper-
ator approach to derive the DGFsiRotropic andachiral
A SPHEROIDAL structure, as a very common geometrynedia, Das and Pozer [10] utilized the Fourier transform
has been widely used to realistically model praCtiC%chnique,Vegnet al.[11], and Nyquist and Kzadri [12] made
problems such as spheroidal airborne antenna radome and{&¢ of wave matrices in the electric Hertz potential to obtain
human head. Usually, two classes of problems are of gregé pGFs and their scattering coefficientsiisotropic and
interest and/or concerns. One is the electromagnetic €8 ,.1ira1 media, Pan and Wolff [13] employed scalarized
tering associated with dielectric spheroidally stratified medi%rmulas, Dreher [14] used the Fourier transform and method
and the other is the EMadiation in spheroidally multilayered 4f jines to re-derive the DGFs and their coefficients in age
structures. _ _ media, Mesat al.[15] applied the equivalent boundary method
For the former, a series of works has been carried out to dgdepptain the DGFs and their coefficients in two-dimensional
about plane EM waves scattered by a single spheroid [1], [@—D) inhomogeneousianisotropic media, Aliet al. [16]
and a system of spheroids [3], [4]. For the latter, only a very littlgsed the Fourier transform and Et al. [17] employed the
amount of work has been reported thus far [5]. EM scattering Caactor wave eigenfunction expansion to formulate the DGFs
in general, be regarded as the EM radiation from a point sourg&q formulated their coefficients ibsotropic and chiral

media, Bernardet al. [18] again employed Fourier transform
and operator technique to the same medium, but with backed
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medium or multilayered structure many references exist, such
as various representations by Pathak [23], Cavalcanhtal.
[24], Engheta and Bassiri [25], Chew [7], Glisson and Junker
[26], Krowne [27], Lakhtakia [28], and Toscano and Vegni
[29], and Weiglhofer [30], [31]. Since there is a large number of
publications available, it is impractical to list all of them here.

In a multilayered cylindrical geometry [6], the DGFs in the
chiral media and the specific coefficients were given by Yin
and Wang [32]. The unified DGFs ithiral media and their
scattering coefficients in general form were formulated bgtLi

al. [33].
In a multilayered spherical geometry [6], [34], [35], the DGFs
in achiral media and their scattering coefficients were gen- =1 ¢=cons
eralized by Liet al. [36]. This work was extended later to the
DGFs inchiral media by Liet al.[37]. Fig. 1. Geometry of a multilayered prolate spheroid under coordinates

In a spheroidal geometry, the DGFs in an unbounded medilfn - )-
were constructed in 1995 by Giarola [38] andétial. [39],

respectively. Also, the scattering DGFs in the presence of: ghjate spheroidal problems can be analyzed by a similar proce-
a perfectly conducting prolate spheroid [38] and 2) a dielegyre presented here or by the symbolic transformagien -i¢
tric spheroid that can reduce to a conducting spheroid by Ighg. — Tic, wherec = (1/2)kd (k is the wave propagation
ting the permittivity to approach infinity [39] were representecsonstant). The ranges gfandé in the oblate spheroidal system
It is shown in [39] that the formulating of the DGFs in sphepejong tog < 7 < 1 and—occ < € < oo, respectively.

roidal structures is difficult and the difficulty is due to the fol-  Assume that the space is divided By — 1 spheroidal in-
lowing two issues: 1) no recursive relations of the spheroidglfaces intav regions, as shown in Fig. 1. The spheroidally
angular and radial functions can be obtained by the methaggatified regions are labeled, respectively,lag, 3, ..., and
usually used for the more common special functions of mathg- The EM radiated field® ; andH ; in the field (fth) region
matical physics (the existing recurrence relations of Whittakef — 1 2 3 ... and~) due to the electric and magnetic cur-
type are, as stated by Meixner [40], actually identities, not thent distributions/, and M, located in the sourcesth) region

recursion formulas) and 2) the coupling series coefficientsofthie— 1 2 3, ... andV), as shown in Fig. 1, can be expressed
scattered fields must be numerically calculated by inversion 9{,
coefficients of matrices.

This paper, as an extension of previous work [39], represents 5 :
the DGFs in a multilayered spheroidal structure and their scat- ¥ < ¥ ¥ &r = FpEy= [Lw“f‘]f - (VXM)f} bgs, (29)
tering Coefﬂ_me_nt matrices in gener_al form. Multlpl_e reflections ¢, v« H;— kJQCHf _ [stfo +(Vx J)f:| 8t (2b)
and transmissions are considered in the construction of the scat-
tering DGFs. Various possibilities that the source distribution

: X . . . _whereé s, denotes the Kronecker delte-{ for f = s and0
and observation point are, respectively, located in an arbltra(ril fs { f=s

. ) . r = 1+ (i is the wave prop-
assumed region of the multilayered structure are considere (lynf # ), kg = wy/iuges(1+ (ioy/wey)) is the wave prop

X ) . - agation constant in thgth layer of the multilayered medium,
the formulation. The matrix equation system satisfied by tha%dsf, 1i7, ando identify the permittivity, permeability, and

tcr?gglper?e?g%{;?rilr?t?ar(f:gce(:nscfrzt(s)tzrt(;mégeag?jusn(;jlsgé Condltlonsc%nductivity of the medium, respectively. The subscrfia)(de-
' notes the layers where the field point and the source point are
located, respectively. A time dependerge(—iwt) is assumed
Il. FUNDAMENTAL FORMULATION to describe the EM fields throughout this paper.

To analyze the EM fields in spheroidal structures, we consider The EM fields excited by an electric current sousteand a
a prolate spheroidal geometry of multilayers, as shown in Fig.magnetic current distributioM ; can be expressed in terms of
Here,n is an angular coordinate (ranged withirl < n < 1), integrals containing DGFs as follows [6], [33], [36]:
¢ is aradial one (ranged within< ¢ < o), ¢ is an azimuthal

one (ranged withild < ¢ < 2), and each spheroidal interface By (r) = iwp /// G, #) - (') AV
- EJ bl k]
g

is assumed to have the same interfocal distahddne relations
between the prolate spheroidal coordinates and the rectangular

coordinates are given as follows [40]: _ / / éSEJ;'? (r, ') - M, (r') dV’ (3a)
d v
7 =3 V-t 1) cosg W m) —iee, [[[ Gy My v
v=2T= @D sing (1b) :

2

v
Alfs) N ' /
Z:gﬁg (10) +/{/ Gy /(r,r) J(r")dV (3b)
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where the prime denotes the coordinatés+’, ¢') of the cur-
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In a source-free region, the solution of the EM fielHs,,,

rent sourced; and M, andV identifies the volume occupied and H,,,,, of the wave modes»n can be found by using the
by the sources in the second region, the superscfi)tlenotes well-known method of separation of variables, and is given by
the layers where the field point and the source point are locatéiee radial functior?(k, ¢) and the angular functior®(k, )

and®(k, ¢) as follows:

H(k, &) = AP (¢, §) + BL (¢, £)

=A'R)(c, &) + BRG)(c, &) (7a)
O(k, n) =CP. (e, n) + DL (¢, m)

=C'S (e, m) + D'SE) (¢, m) (7b)
&k, ¢) = E cos(mep) + Fsin(me) (7¢)

respectively.
Substituting (3a) and (3b) into (2a) and (2b) respectively, we
obtain
(@] L [G )
VXV ) ~F | )
LG, 1) ] LGip(r, 1)
=16(r —7")85 (4a)
(Gl (G )
VIV o o | T aue
LG (7)) ] LG (1)
=V x I§(r —7")6ys (4b)

wherel stands for the unit/identity dyad aédr — +) identi-
fies the Dirac delta function. Tai [6] define@gj)(r, ') and

wherem andn identify the eigenvalue parameters, B, A’,
B',C,D,C', D', E, andF are constants, ari8”*(«, ) and
L™(«, 3) denote the generalized Legendre functions in general
[42].

G\°)(r, +') as the electric and magnetic DGFs of the first However,P;(c, &) andLy(c, &) are referred to as the first

kind—GY”(r, 7') and GV (r, #'), and G (r, v') and

ml

ag;} (r, ') as the electric and magnetic DGFs of the seco

kind—@i@s)(r, ') and@ﬁ,{j)(r, ).

SinceGYY (r, v') and G (v, /) are related by the first

elements of (4a) and (4b), whi@") (r, +') andG2) (r, +)

are related by the second elements of (4a) and (4b), we do
need to derive all of them. Therefore, only the formulations Q
G2 (r, vy andGY ) (r, ') will be considered. The following
boundary conditions at the spheroidal interfgce £, are sat-

isfied by various types of DGFs after (3a) and (3b) is substitut

into the Dirichlet boundary conditions

. @(fs) . @[(Hl)s}
& [—% = x| e (5a)
Gg}\g GH]W
) G:3 )
| ex v | g | = [V
f Gy €f+1
i
X V% [@[(Hl)s} (5b)
HM

and second kinds of radial functionﬁéﬁ%(c, &) andRﬁ,QJL(c, 3]

r{ 0], respectively. They can also be considered as the gener-

alized spherical Bessel functions of the first and second kinds
since they have the similar properties as compareg), thr)
andy, (kr) in spherical coordinates. Therefore, the third and
fourth kinds of radial functionsR,(,?{ZL(c, 3] andRﬁfﬁl(c, &) can
% be constructed in terms of the first and second kinds, similar
those of the third and fourth kinds of spherical Bessel func-
tions (i.e., the Hankel functions$ (kr) and h{? (kr) of the
fi(rjst and second kinds). To simplify the representation of radial
Ff\unctions of different kinds, the radial function of tki kind,
Rﬁ,%(c, &) (i =1,2,3,andd4) takes the usual form. In a similar
form of the associated Legendre functi&ji*(n) in the spher-
ical case, the angular function for a spheroidal case is chosen as
Sm(c, ) [40].

Thus, the scalar wave eigenfunctions are given by [40]

CcOs
)

¥ (e, 1) = RO (e OSIe,m) . (me)  (8)

sin

where, for the fields inside the spheroid, the first kind of radial

Where[i//éﬁi] stands for the ruling that either the upper eléefunction ¢ = 1) is taken and for the fields outside the spheroid,
ments or the lower elements of the matrices should be takents third kind ¢ = 3) is used because of the time dependence
the same time. In fact, (5a) and (5b) represent four equationgifosen. For the intermediate region between the two spheroidal

all the upper and lower elements are considered, respectiveliterfaces, both the first and third kinds of the radial functions
Furthermore, the DGG%R}(T, r') can be obtained from the are used in the construction of the DGFs.

@gj)(r, r') by making the simple duality replacemedfts—
HH— -E J—- MM-— —J i — e ande — pu.In

this paper, only the DGEgj)(r, ') is represented to avoid

unnecessary repetition.

[ll. UNBOUNDED DGFs
A. Method of Separation of Variables

According to Collin [41], the scalar Green’s functigfr, +/)
satisfies the following differential equation:

(V24 E)g(r, v') = =6(r — 7). (6)

B. Unbounded Scalar Green’s Function

In terms of the above scalar spheroidal wave functions, the
scalar Green'’s function has been formulated [40] and is given

by

(r, ) _ et
ag\r,r _47r|,,._,,./|
:% Z Z 2]:7 67710 z/}(6371ﬂ(c7 T>)P(/)(eliyn(c7 ,,.<)

n=m m=0
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ik SN D 2= 60 am a(i) _1 @) A
=5 Z ZO N S™ (e, 1) Nimn(c, ) : V x V x [wzmn(c, ) } . (12b)
m COs L . .
S (e, U')Sin [m(é — ¢)] The explicit forms of the spheroidal vector wave functions
(3) (1 y y under the alternative spheroidal coordinates systems are given
. { (e, E)Bomn(e, &), £2¢ (9) by Flammer in [40].
Rﬁ,%(c, £)R§,?{21(c, &, E<e Itis worth mentioning that the singularity of the Green’s func-

tions was a controversial issue in the late 1970’s [43]. The fo-
wherer> andr< denote the coordinate vecter where¢ is  cused point was on the exact representation of the irrotational
taken asnax(¢, ¢') andmin(¢, ¢'), respectively, while the co- DGFs, which was missing in the first edition of Tai's book [44].
ordinatesn, ¢ and#’, ¢’ should be adopted correspondinglyNow, the issue of irrotational DGFs has been well resolved and

8mo is the Kronecker delta aniy,,,,, is the normalization factor iS no longer the problem to the electromagnetics community. In

of the angular function of the first kind. this paper, the irrotational part of the Green’s dyadic is found
from a combination of two contributions: one of them taken di-
C. Unbounded Green’s Dyadics rectly from the unit delta dyadic and the other obtained from the

To formulate the DGFs, one way is to solve (4a) for ther.rﬁirst-orderderivative of the Green’s function at the discontinuity

and the other is to employ the following relations between tlﬁﬁ)é)int atg = &' [6, pp. 128-129, 154]. T_he tot_al effects (,)f the
Green’s dyadics and scalar Green’s function in the unbounddyp parts make the present form of the irrotational contribution
space, according to Tai [6] and Collin [41] to the Green’s dyadic.

—_ 1 _ IV. SCATTERING GREEN'S DYADICS
Grolr, 1) = [1 + = VV} [I (r, r’)} (10a)
k Using the principle of scattering superposition, the DGF can
Guyolr,7) =V x [Tg(r, T/)} be considered as the sum of the unbounded Green’s dyadic
"= in (11) and a scattering Green’s dyadic to be determined. The
=Vyg(r, ') x I (10b)  Green's dyadic is, therefore, given by [6]

where the additional subscriptbesideE.J and H.J stands for
the unbounded space.
In terms of the above-defined spheroidal vector wave func-

tions, in explicit bi-vector form, the electric DGFs given in (10ajyhere the scattering DG@%Z (r, v') describes an additional

agj)(r, ') = Gro(r, r')bys +@gji(r, ') 13)

can be obtained after substitution of (9) oz ¢’ as contribution of the multiple reflection and transmission waves in
the presence of the boundary produced by the dielectric media,
. € while the unbounded DGEE so(r, '), given by (11), repre-
Gryolr, r') = 72 S(r—r") sents the contribution of the direct waves from radiation sources
s in an unbounded medium. The subscriptientifies the scat-

ey
= 2 - 6771,0 r(/)i"”"(c7 ’f'/) tering DGFS

(3
+ o Z Z Non (3) , When the antenna is located in thid region, the scattering
n=m m=0 1/sz(c, ™) DGF in the fth regions must be of the form similar to that of
NY® (e, 7) the unbounded Green’s dyadic. To satisfy the boundary con-
-+ o g  ditions, however, the additional spheroidal vector wave func-
N“i(jjz(c, T) Ng(i)n(c, T) tions M‘i(;)n(c, ¢) should be included to account for the ef-
’ @) ’ fects of multiple transmissions and reflections. For the ease of
N im(cv 7) } (11) determination of the scattering coefficients, the sets of vector

N'f(j?l(c, )

+ N (e, 7) # wave functionsMifjim(c, &) and N:thj)ﬂm(c, &) are used

in the construction of the scattering DGBHFES’)il (e, §and
whereé denotes the spheroidal radial unit vecig: — /) is N:;t:)il,n(ca §) are defined as follows:

the three-dimensional Dirac delta function, and the prime de-

notes the coordinateg’( 77/, ¢’). The first term of (11) stands ‘

for the nonsolenoidal contribution and can be obtained by using Xt,(z)ﬂ,n(a §) =
the same method given by Tai [6, pp. 128-129, 154.]. The sphe- ‘

roidal vector wave functionM‘i(;) (c,7) andN‘i(;) (c,7r)(a= X9 (e 8) = [X"Z("’) (c, &) iX%(jL)n(c, 5)} (14b)

o - (i

S [X0 e oFxt? o] 4a)
1
2

0, 7, m—1,n

%, 9, %) for the construction of Green’s dyadics are defined in

terms of the above scalar eigenfunctions as follows: )
whereX denotes eitheM or N.

ali) @) . o For a two-layer spheroidal geometry, the DGFs have been
M. (e, 1) =V [?/) (e T)a} ; a=2%,9,2 (12a) given by Liet al.[39], [45]. Therefore, the scattering DGFs in

p
4



536 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 3, MARCH 2001

each region of a multilayered spheroidal structure can be faauses the difficulty in determining the unknown scattering co-

mulated in the following similar fashion: efficients.
To solve for the unknown coefficients, the following ex-
G (r, ) panded intermediate forms [1], [2] are introduced:
'[: o> o> )
zgzz:g_&ﬂ\,) form >1:

Al A Mt (e AN NTD (0

fomn zm+l n f-mn m+1,n

PP ()
FAENMTY | (ep, OFATEINTD | (e, ) =
Fem ot e ) =a- )RS e, ), 1=0,1,2,3 (17a)

AU (e, O+ AN, (e, ) Ay
Z t, 4+l Prn 1+t(77)

NE

Joomt +1,n Jomad eerl 7

3 3 ~
+HATINM D (o, O+ AN D (e, 6|3 o
M g 2N G R =n(1—-n?)"" Sr(e,n), [=0,1,2 (17b)
+ (A MY (o, ©) + AN, D (ep, )] 2} .
+(1—651) Z ) i 11+t(77)
+axM pgt+(1) +aN art(l) t=0
{|:Bf m”MO m+1, ”(c‘f 5) Bf m”N ’m+1 ”(c‘f7 5) _ (1_ 2)1—(1/2) Sgl(c7n) l_ 1 2 3 (l?C)
ot g () CaN (D) A T dyp I
+ BMM Y (er +BENNCY (er )]s
[Bj”fy‘iMJ’(l) e O+ BRENNTY (e, 0) ZIZ"SH C)
yM (1) ylN (1) ~ dsm
B MY (ep, ©+B NN (ep, 63 — a1 — gy EEED g
le\/f M~(1) le\’ N~(1) 5 7
70 mn (Cf7 5) 7 mn (Cf7 5) Zr- qf o:
(15 andform =0:
on 1
Here, é;ny and & are Kronecker delta functions. 2% Li(e) Py (n)
t

= (1/2)k.d ande¢; = (1/2)k;d, wherek, andk; are, re-

—
spectively, the wave propagation constants in which the source =@1-7) (1/2)50( ), 1=1,2,3 (18a)

and field points are IocatedA(ifnfy M Aﬁi’fnfy N i O PL ()
1
BEifnfy")M, and B(ﬁ *v: 2N " are unknown scattering Py e
coéfficients to be determlned from the boundary conditions. = (1 =) =/28%c, ), 1=1,2 (18b)
V. NONORTHOGONALITY AND ITEM EXPANSION ; L () Ply(n)
After th_e substlt_utlon of (13) into (5a) anql (5b), respect_lvely, —a- 772)1,(1/2) ds,(c, 77)7 1=1,2,3 (18¢)
the following relations of vector wave functions are used in the dn
vector operations: o
N N Z P1+t(77)
Vx MU, (e, =kNEY (&) (16a) =0 4%
z(1) z(1) = 77(1 )l (1/2)477 I= 17 2 (18d)
Vx M- (¢, §) =kN7 (c. §) (16b) dn
. m 0 i i
v x NEO ME®D 16¢ whereS™(c, n) andS\ (¢, n) are spheroidal angular functions,
X e 8= omELn (e &) (16c) P f+t( ) and Pl (n) are associate Legendre functions, and
vV x N°® (c, &) = MO (c, &) (16d) It =0,1,2, ..)areintermediates, which have been pro-
o St ) vided in [46] and [47]. The individual terms in the summation

overt must be matched term by term, by considering the or-
ogonallty of P~ ,(n) and Pl (n). By substitution of the
above equations, all factors being functiong @fre replaced by

Due to the orthogonality of the trigopnometric functions, the
a series of the associated Legendre functions, which are orthog-
coefficients of the same-dependent trigonometric function in
%nal functions in the intervat1 < 5 < 1.

(5a) and (5b) must be equal, component by component; t
equalities must hold for each corresponding term in the summa-
tion overm. For the summation over, however, the individual

terms in the series cannot be decomposed term by term becaugeénally, the equations used to determine the unknown coeffi-
of the nonorthogonality of the spheroidal radial functions. Thidgents constitute an infinite system of coupled linear equations

These relations are the same as those of vector wave functign
in the orthogonal coordinate systems [6], [40].

VI. MATRIX EQUATION SYSTEMS
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and the unknown coefficients can be solved for from the foB. Matrix (A")

lowing matrix equation systems: In the similar fashion, the first matrix in the right-hand side

(AZ\B) - (Afw)_l . (-rh) . (rh) of (19) is expressed explicitly as
h =4z, —z, +y, —y, andz, respectively  (19) Qb
0
Here,(A", ) is the matrix of the unknown coefficients to be de- Qn
termined,(I'") is the constant matrix in which the integrals of (Ah) = (21a)

source currents are involved, apd/,,,) and(X") are the ma-
trices of constant elements obtained from the functional expan-
sions. For anV-layered spheroidal structure, if the truncation

number of the summation overis chosen ad/;-, which means \yhere the element matrices are given in (21b), shown at the

thatn is taken asn, m +1, ..., m + Ny — 1 as an approxi- pottom of the following page, wher@ is the zero matrix; the
mation to the |nf|n|te summatlon for a given, the matrices in gp. matnceéWf are given forf = 1 by

(19) can be expressed subsequently.

h
an—l—]\fT —1

1

h
A 2

= o

A. Matrix (A%) (Uh(z) t) Vi@ t)l

The matrix in the left-hand side of (19) is found in its explicit e o 1

form to be , ( )1 ( )1
Wi =

Ar / ( h(3),t)1 ( ! t)l

1

),

( h(3) t

A-hr_
(AZ\B) _ ];hl (20) andfor2 < f < N —1by
2
f
B} Wi
_ ( U, f)f ( Vi3 f)f ( U, f)f ( Vi, f)f
: f f f f
B, ( uhe, t)f ( Vi), t)f ( U, t)f ( Vi), t)f
where the element matrices are defined as = ; ; ; ;
ArM h(3) t h(3) t h(l) t h(l) t
}jwm ™ ( )f ( )f ( )f ( )f
AJL + ] f f f f
m,mt1 W(3),t 1(3),t n(1),t h(l) t
| (vi?), (), (i), (U,
AMM and the sub—matricve_ are derived forf = N as
! Jomom+Np—1 f—-1
A= AN , forf=1,2,3,...,N—-1
fgmam . h(1),t _ h(1),t
o (v )N .- )N 1
7 omamatl
- Uh(l),t) - (Vh(l),t)
: WJ{ = ( ¢ N-1 ¢ N-1
A;LNm mtNp—1 —PN (Vh(l) t) i —PN (Uh(l) t) .
and har iy oy
be e PN (V¢ 7 )N—l PN (U¢ )N 1
Bh]\l
fomm andfor2 < f < N —1as
' ! - Uh(3) t - Vh(?)) t
B T for f=2,34,...,N ( )f ' ( )f '
f = VN ’ =4y 9y Ay -e ey . 3 3
ij\mm _ (U;(3)7t) _ (V;(i%),t)
; oo f=1 f=1
BhN Wf—l =
Jomomtl _ 1(3),t _ 1(3),t
| or (Vi) L, e (V)
. h(3),t Y h(3),t
B —or (VEOT), e (V)

s Emomt Np—1

F—1
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()
(),
(),

(V)
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o
().
Y (Uh(?,) t)

—py (UZ(?’)J)JC

f=

for the case where the source is located in one of the interme-

1

-1

In the above equationgy = /ey /pis/\/€—1/117-1. Details
h i h(i 7 h i

of (U™ "y, (UL 1y, (v ")p, and(VEY )p (herep =

fig=forf—1, andf denotes the location of the field point)

in different cases are provided in the Appendix.

C. Matrix (Y")

The second matrix in the right-hand side of (19) is expressed

as

h
C 0
h
Cr

(x")

1B
Crn,—l— N

I
Cy =

diate layersf < s < N —1) as

0

(v,
)

(22¢)

and for the case where the source is located in the inner region

(22a) (s = N)as

where the element matrices are defined for the case where the
source is located in the out region £ 1) as

h(l) t)

h
Ct

0]

(Vh(3) 1>A
N-1

V)

on (Uh(3) t)

( N—-1
( VI, t) oN (Ug(i%),t)
L N-1
ch = ey 1 (22b) In the above equationsp is the zero matrix,p, =
( )1 Ve s/ /e 1 /1. Details of (U@, (Ur "y,
U\ (Ve and(VE@ e (here,p_s,q_s, ors— 1, ands
( )1 denotes the Iocatlon of the source point) in different cases are
provided in the Appendix.
Wi W2 o0
0 Wi W3
f-1 !
o 0 0 0 o0 0 Wi, Wi_, 0 0 0 0 0 0
t = f FH1
0 0 0 0 0 0 Wf Wf 0 0 0 0 0
N-2 N—-1
0 0 o0 O 0 0 0 0 0 0 WY 3 Wil o
0 0 o0 O 0 0 0 0 0 0 0 WY1 Wi,

(21b)
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D. Matrix (T'")

The last matrix employed in the right-hand side of (19)

sufficiently large, an adequate number of relations satisfied by

ignknown coefficients are formulated and the unknown coeffi-

defined as follows. In the case that the source located in the o fNts can be determined explicitly. However, it is indicated by

region s = 1)
(r*) =
and

(r*) =

0]

0

ey
< o ) , forh=+z, —z, 2 (23a)

‘I’};(l)
< e ) , for h = 4y, —y. (23b)

Asano and Yamamoto [1] that a sufficient computational accu-
racy can be achieved by choosing a proper truncation number
that can, as suggested by Sinha and MacPhie [2], be taken as
Nr = Integer(|c|+4). In other words, there exdt( N —1) x Np
scalar unknowns (a¥ vector unknowns) for each of the afore-
mentioned equations. Assuming that the inder the equa-
tions is taken a®, 1, ..., Ny — 1, we can determine these
4(N — 1) x Np scalar unknowns (or th&r vector unknowns)

In the case that the source is located in the intermediate regﬂmquely'
2<s<N=-1)

(x") -

and

(") =

0
RS

4

P"®

4

0

0
gt
o"®

e

, for h = +y, —v.

0

, forh = +z, —x, 2

(23c)

(23d)

In the case that the source is located in the inner regiena V)

(r*) =
and

() =

0
<‘Illé(3)> ) forh =4z, —z,z (23e)

0
W f = -
<‘Il;0(3)> ; orh=+y, -y

e

where “0” is the zero matrix and

O =

i =

2- 6771 @

N (e €)
2 - 67710 (i) v
Nrn(fn-l-l) };m(m‘H)(cs’ S )

2 —ébmo (2) v
— Cs,
N'rn,('rn,—l—/\TT—l) Dm,(m,+NT—1)( 5 )

2 - 6771 @
T (e )
2- 67710 ()

b (s, &)
Nm(m+1) Cm(m+1yN 57

2— 67710 (7)
oty e ©)
m(m+Nr—1) ¢

(231)

VII. DIScUsSIONS ANDCONCLUSION

In this paper, the DGFs in multilayered spheroidal structures
have been formulated in terms of these appropriate spheroidal
vector wave eigenfunctiong =" Mi(fn)n, NE® ,and

mEl,n’ mEl,
N i(;)n) and coordinate vectots, 4, andz. The representation
and formulation of DGFs in the spheroidal coordinates have
been made in a different eigenfunction expansion, as compared
with those conventional formulations in planar, cylindrical, and
spherical coordinates. The nonsolenoidal term of the electric
DGF has been extracted by following the same procedure given
by Tai [6]. The unknown coefficients of the scattering DGFs
can, even coupled to each other, be determined from the matrix
equation systems using the functional expansion technique. The
scattering coefficients of the Green’s dyadic for various cases
of source and field locations have been provided. Although
the determination of these matrix-formed coefficients has been
provided in close form in this paper, it should be noted here
that the integrals of source currents are involvedXit) of
(23a)—(23f) and the unknowns cannot be obtained analytically
from the equations without the integrals of source currents.
This is different from the spherical case, where the scattering
coefficients are independent of integrals of source currents
and decoupled from each other. However, for a given source
excitation in a spheroidal structure, the distribution is known
and the source point does not appear after the integration over
the whole source region.

Besides the lack of orthogonality of spheroidal vector wave
functions, the very complicated calculation of the spheroidal an-
gular and radial harmonics is another difficulty in obtaining the
analytical solutions in spheroidal structures. With the develop-
ment of computer facilities and the appropriate method and rou-
tine of calculation [48], the tabulated values of spheroidal an-
gular and radial functions can be easily obtained and more ana-
lytical solutions in spheroidal structures can be found directly by
using the presented Green’s dyadic. Applications of the DGFs
in spheroidal structures presented here can be found from many
practical problems such as the EM waves inside and outside a
stratified prolate dielectric radome utilized to protect airborne
or satellite antennas from the environmental effects [49], handy

In (20)—(23f), for each specifietivalue, eaclf2] or C? con- phone radiation near the layered spheroid-shaped human head
tains 4(N — 1) rows for anN-layered spheroidal structure.[46], [47], and rainfall attenuation of microwave signals due to
Therefore, there ard(N — 1) sets of unknowns that are ofoblate raindrops [50]. Some numerical results about the appli-
infinite number and coupled to each other [t eand ¢-com- cations of the formulated DGFs will be presented in part Il of
ponents derived from (5a) and (5b)]. In principle, by makingthis paper.
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APPENDIX

(11]

Subsequently provided are the detailed expressions of

n(i), (i), n(i), n(i),
(U, (U, (v e, and (Vi (where
h = 4z, —x, +y, —y andz, respectively, and = 1 and3)

involved in (21a)—(22c)

(wo) = (e

1 (3),t
Cps &q) ugn(;)(mH)(cP’ )

(12]

(13]

K (3), 14
uin(m)(wtwrNT—m(cPv 5(1)) (A-1a) [14]
h(i), r IMON W),
(Uqb( ) t)q - (UZ““"(W)*;(CP’ S(I) qu’»(vvz)(vvtz+1)(cP7 5(1) [15]
1/ (3), t )
ULt e &) AID)
ORA N Y HOR: W (i), t
(V'l] )q —_ (Vzwmm (Cp, Sq) V277M(m+1)(cp7 5(1) [17]
K (i), t
Ve o &) 10
1), t\? (i)t 1 (6, t
(Vé( ) ){] - (Vi‘*"(m)m (ep: &) V:G"(m),(m,+l>(cp7 &)
K (i), t 19
VIO e &) (A B
Here,i’ = +for h = +xandh = +y, i = —forh = —zand  [20]

h = —y, ' = zfor h = z. The closed forms ctfl’!fz’f(cp, &),
Ut Dt ey, VIOt ey and VWD He, ¢) are pro-

dmn nmn o Pmn

vided in [46] and {47].
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