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Abstract—Dyadic Green’s functions (DGFs) and their scat-
tering coefficients are formulated in this paper for defining the
electromagnetic fields in multilayered spheroidal structures.
The principle of scattering superposition is applied. In a similar
form of the DGF in an unbounded medium under spheroidal
coordinates, the scattering DGFs due to multiple spheroidal
interfaces are expanded in terms of the spheroidal vector wave
functions. For the lack of general orthogonality of the spheroidal
radial and angular functions, the Green’s dyadics are expressed
in a different way where the coordinate unit vectors are also
combined in the construction, as compared with the conventional
form of vector wave eigenfunction expansion. The matrix equation
systems satisfied by the coupled scattering (i.e., reflection and
transmission) coefficients of the DGFs are obtained so that these
coefficients can be solved uniquely. The DGFs can be employed to
investigate effects of spheroidal radomes used to protect the air-
borne or satellite antenna systems and of handy phone radiation
near the spheroid-shaped human head, and so forth. Numerical
calculations about the applications of the formulated multilayered
DGFs will be presented in part II of this paper.

Index Terms—Antenna radiation, dyadic Green’s function,
electromagnetic-wave theory, spheroidal wave functions, stratified
media.

I. INTRODUCTION

A SPHEROIDAL structure, as a very common geometry,
has been widely used to realistically model practical

problems such as spheroidal airborne antenna radome and the
human head. Usually, two classes of problems are of great
interest and/or concerns. One is the electromagnetic (EM)scat-
tering associated with dielectric spheroidally stratified media,
and the other is the EMradiation in spheroidally multilayered
structures.

For the former, a series of works has been carried out to date
about plane EM waves scattered by a single spheroid [1], [2],
and a system of spheroids [3], [4]. For the latter, only a very little
amount of work has been reported thus far [5]. EM scattering can,
in general, be regarded as the EM radiation from a point source
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of varying current distribution with the space distance that is lo-
cated at infinity. When the source is located inside an interme-
diate region of stratified spheroidal structure, the multiple scat-
tering is involved and the wave modes inside the region become
more complicated. In this sense, the EM radiation problem is
more general as compared with the EM scattering problems.

To analyze EM radiated fields in spheroidal geometries, the
dyadic Green’s function (DGF) technique provides a straight-
forward way. The DGFs in various geometries such as single
stratified planar, cylindrical, and spherical structures were
formulated [6], [7]. In multilayered geometries, the DGFs have
also been constructed and their coefficients derived. Usually, two
types of DGFs, i.e., the EM DGFs and the Hertzian vector poten-
tial DGFs, were expressed. Three methods that are available in
the literature, i.e., the Fourier transform technique (normally in
planar structures only), wave matrix operator, and/or transmis-
sion line (frequently in planar structures) methods, and vector
wave eigenfunction expansion method (in regular structures
where vector wave functions are orthogonal) were developed.

In a planar stratified geometry [6], Lee and Kong [8]
employed Fourier transform to deduce the DGFs in an

medium, Sphicopouloset al. [9] used an oper-
ator approach to derive the DGFs in and
media, Das and Pozer [10] utilized the Fourier transform
technique, Vegniet al. [11], and Nyquist and Kzadri [12] made
use of wave matrices in the electric Hertz potential to obtain
the DGFs and their scattering coefficients in and

media, Pan and Wolff [13] employed scalarized
formulas, Dreher [14] used the Fourier transform and method
of lines to re-derive the DGFs and their coefficients in the
media, Mesaet al.[15] applied the equivalent boundary method
to obtain the DGFs and their coefficients in two-dimensional
(2-D) inhomogeneous media, Ali et al. [16]
used the Fourier transform and Liet al. [17] employed the
vector wave eigenfunction expansion to formulate the DGFs
and formulated their coefficients in and
media, Bernardiet al. [18] again employed Fourier transform
and operator technique to the same medium, but with backed
conducting ground plane, Barkeshli utilized the Fourier trans-
form technique to express the DGFs and their coefficients in

media [19],
media [20], and media [21], and Habashyet
al. [22] applied the Fourier transform technique to work out
the DGFs in arbitrarily plasma. For the
cases of a free-space (or unbounded space), a single-layered
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medium or multilayered structure many references exist, such
as various representations by Pathak [23], Cavalcanteet al.
[24], Engheta and Bassiri [25], Chew [7], Glisson and Junker
[26], Krowne [27], Lakhtakia [28], and Toscano and Vegni
[29], and Weiglhofer [30], [31]. Since there is a large number of
publications available, it is impractical to list all of them here.

In a multilayered cylindrical geometry [6], the DGFs in the
media and the specific coefficients were given by Yin

and Wang [32]. The unified DGFs in media and their
scattering coefficients in general form were formulated by Liet
al. [33].

In a multilayered spherical geometry [6], [34], [35], the DGFs
in media and their scattering coefficients were gen-
eralized by Liet al. [36]. This work was extended later to the
DGFs in media by Liet al. [37].

In a spheroidal geometry, the DGFs in an unbounded medium
were constructed in 1995 by Giarola [38] and Liet al. [39],
respectively. Also, the scattering DGFs in the presence of: 1)
a perfectly conducting prolate spheroid [38] and 2) a dielec-
tric spheroid that can reduce to a conducting spheroid by let-
ting the permittivity to approach infinity [39] were represented.
It is shown in [39] that the formulating of the DGFs in sphe-
roidal structures is difficult and the difficulty is due to the fol-
lowing two issues: 1) no recursive relations of the spheroidal
angular and radial functions can be obtained by the methods
usually used for the more common special functions of mathe-
matical physics (the existing recurrence relations of Whittaker
type are, as stated by Meixner [40], actually identities, not the
recursion formulas) and 2) the coupling series coefficients of the
scattered fields must be numerically calculated by inversion of
coefficients of matrices.

This paper, as an extension of previous work [39], represents
the DGFs in a multilayered spheroidal structure and their scat-
tering coefficient matrices in general form. Multiple reflections
and transmissions are considered in the construction of the scat-
tering DGFs. Various possibilities that the source distribution
and observation point are, respectively, located in an arbitrarily
assumed region of the multilayered structure are considered in
the formulation. The matrix equation system satisfied by the
coupled scattering coefficients from the boundary conditions at
the spheroidal interfaces are obtained and solved.

II. FUNDAMENTAL FORMULATION

To analyze the EM fields in spheroidal structures, we consider
a prolate spheroidal geometry of multilayers, as shown in Fig. 1.
Here, is an angular coordinate (ranged within ),

is a radial one (ranged within ), is an azimuthal
one (ranged within ), and each spheroidal interface
is assumed to have the same interfocal distance. The relations
between the prolate spheroidal coordinates and the rectangular
coordinates are given as follows [40]:

(1a)

(1b)

(1c)

Fig. 1. Geometry of a multilayered prolate spheroid under coordinates
(�; �; �).

Oblate spheroidal problems can be analyzed by a similar proce-
dure presented here or by the symbolic transformation
and , where ( is the wave propagation
constant). The ranges ofand in the oblate spheroidal system
belong to and , respectively.

Assume that the space is divided by spheroidal in-
terfaces into regions, as shown in Fig. 1. The spheroidally
stratified regions are labeled, respectively, as , and

. The EM radiated fields and in the field ( th) region
( , and ) due to the electric and magnetic cur-
rent distributions and located in the source (th) region
( , , and ), as shown in Fig. 1, can be expressed
by

(2a)

(2b)

where denotes the Kronecker delta ( for and
for ), is the wave prop-
agation constant in theth layer of the multilayered medium,
and , , and identify the permittivity, permeability, and
conductivity of the medium, respectively. The subscript () de-
notes the layers where the field point and the source point are
located, respectively. A time dependence is assumed
to describe the EM fields throughout this paper.

The EM fields excited by an electric current sourceand a
magnetic current distribution can be expressed in terms of
integrals containing DGFs as follows [6], [33], [36]:

(3a)

(3b)
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where the prime denotes the coordinates ( ) of the cur-
rent sources and , and identifies the volume occupied
by the sources in the second region, the superscript () denotes
the layers where the field point and the source point are located,
respectively.

Substituting (3a) and (3b) into (2a) and (2b) respectively, we
obtain

(4a)

(4b)

where stands for the unit/identity dyad and identi-
fies the Dirac delta function. Tai [6] defined and

as the electric and magnetic DGFs of the first
kind— and , and and

as the electric and magnetic DGFs of the second
kind— and .

Since and are related by the first
elements of (4a) and (4b), while and
are related by the second elements of (4a) and (4b), we do not
need to derive all of them. Therefore, only the formulations of

and will be considered. The following
boundary conditions at the spheroidal interface are sat-
isfied by various types of DGFs after (3a) and (3b) is substituted
into the Dirichlet boundary conditions

(5a)

(5b)

where stands for the ruling that either the upper ele-
ments or the lower elements of the matrices should be taken at
the same time. In fact, (5a) and (5b) represent four equations if
all the upper and lower elements are considered, respectively.

Furthermore, the DGF can be obtained from the
by making the simple duality replacements

, , , , , and . In
this paper, only the DGF is represented to avoid
unnecessary repetition.

III. U NBOUNDED DGFS

A. Method of Separation of Variables

According to Collin [41], the scalar Green’s function
satisfies the following differential equation:

(6)

In a source-free region, the solution of the EM fields
and of the wave modes can be found by using the
well-known method of separation of variables, and is given by
the radial function and the angular functions
and as follows:

(7a)

(7b)

(7c)

where and identify the eigenvalue parameters,, , ,
, , , , , , and are constants, and and

denote the generalized Legendre functions in general
[42].

However, and are referred to as the first
and second kinds of radial functions and
[40], respectively. They can also be considered as the gener-
alized spherical Bessel functions of the first and second kinds
since they have the similar properties as compared to
and in spherical coordinates. Therefore, the third and
fourth kinds of radial functions and can
also be constructed in terms of the first and second kinds, similar
to those of the third and fourth kinds of spherical Bessel func-
tions (i.e., the Hankel functions and of the
first and second kinds). To simplify the representation of radial
functions of different kinds, the radial function of theth kind,

( , , , and ) takes the usual form. In a similar
form of the associated Legendre function in the spher-
ical case, the angular function for a spheroidal case is chosen as

[40].
Thus, the scalar wave eigenfunctions are given by [40]

(8)

where, for the fields inside the spheroid, the first kind of radial
function ( ) is taken and for the fields outside the spheroid,
the third kind ( ) is used because of the time dependence
chosen. For the intermediate region between the two spheroidal
interfaces, both the first and third kinds of the radial functions
are used in the construction of the DGFs.

B. Unbounded Scalar Green’s Function

In terms of the above scalar spheroidal wave functions, the
scalar Green’s function has been formulated [40] and is given
by
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(9)

where and denote the coordinate vector, where is
taken as and , respectively, while the co-
ordinates and should be adopted correspondingly;

is the Kronecker delta and is the normalization factor
of the angular function of the first kind.

C. Unbounded Green’s Dyadics

To formulate the DGFs, one way is to solve (4a) for them,
and the other is to employ the following relations between the
Green’s dyadics and scalar Green’s function in the unbounded
space, according to Tai [6] and Collin [41]

(10a)

(10b)

where the additional subscriptbeside and stands for
the unbounded space.

In terms of the above-defined spheroidal vector wave func-
tions, in explicit bi-vector form, the electric DGFs given in (10a)
can be obtained after substitution of (9) for as

(11)

where denotes the spheroidal radial unit vector, is
the three-dimensional Dirac delta function, and the prime de-
notes the coordinates ( ). The first term of (11) stands
for the nonsolenoidal contribution and can be obtained by using
the same method given by Tai [6, pp. 128–129, 154.]. The sphe-
roidal vector wave functions and (

) for the construction of Green’s dyadics are defined in
terms of the above scalar eigenfunctions as follows:

(12a)

(12b)

The explicit forms of the spheroidal vector wave functions
under the alternative spheroidal coordinates systems are given
by Flammer in [40].

It is worth mentioning that the singularity of the Green’s func-
tions was a controversial issue in the late 1970’s [43]. The fo-
cused point was on the exact representation of the irrotational
DGFs, which was missing in the first edition of Tai’s book [44].
Now, the issue of irrotational DGFs has been well resolved and
is no longer the problem to the electromagnetics community. In
this paper, the irrotational part of the Green’s dyadic is found
from a combination of two contributions: one of them taken di-
rectly from the unit delta dyadic and the other obtained from the
first-order derivative of the Green’s function at the discontinuity
point at [6, pp. 128–129, 154]. The total effects of the
two parts make the present form of the irrotational contribution
to the Green’s dyadic.

IV. SCATTERING GREEN’S DYADICS

Using the principle of scattering superposition, the DGF can
be considered as the sum of the unbounded Green’s dyadic
in (11) and a scattering Green’s dyadic to be determined. The
Green’s dyadic is, therefore, given by [6]

(13)

where the scattering DGF describes an additional
contribution of the multiple reflection and transmission waves in
the presence of the boundary produced by the dielectric media,
while the unbounded DGF , given by (11), repre-
sents the contribution of the direct waves from radiation sources
in an unbounded medium. The subscriptidentifies the scat-
tering DGFs.

When the antenna is located in theth region, the scattering
DGF in the th regions must be of the form similar to that of
the unbounded Green’s dyadic. To satisfy the boundary con-
ditions, however, the additional spheroidal vector wave func-
tions should be included to account for the ef-
fects of multiple transmissions and reflections. For the ease of
determination of the scattering coefficients, the sets of vector
wave functions, and are used

in the construction of the scattering DGFs. and

are defined as follows:

(14a)

(14b)

where denotes either or .
For a two-layer spheroidal geometry, the DGFs have been

given by Li et al. [39], [45]. Therefore, the scattering DGFs in
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each region of a multilayered spheroidal structure can be for-
mulated in the following similar fashion:

(15)

Here, and are Kronecker delta functions.
and , where and are, re-

spectively, the wave propagation constants in which the source
and field points are located. , ,

, and are unknown scattering
coefficients to be determined from the boundary conditions.

V. NONORTHOGONALITY AND ITEM EXPANSION

After the substitution of (13) into (5a) and (5b), respectively,
the following relations of vector wave functions are used in the
vector operations:

(16a)

(16b)

(16c)

(16d)

These relations are the same as those of vector wave functions
in the orthogonal coordinate systems [6], [40].

Due to the orthogonality of the trigonometric functions, the
coefficients of the same-dependent trigonometric function in
(5a) and (5b) must be equal, component by component; the
equalities must hold for each corresponding term in the summa-
tion over . For the summation over, however, the individual
terms in the series cannot be decomposed term by term because
of the nonorthogonality of the spheroidal radial functions. This

causes the difficulty in determining the unknown scattering co-
efficients.

To solve for the unknown coefficients, the following ex-
panded intermediate forms [1], [2] are introduced:

for

(17a)

(17b)

(17c)

(17d)

and for :

(18a)

(18b)

(18c)

(18d)

where and are spheroidal angular functions,
and are associate Legendre functions, and

( ) are intermediates, which have been pro-
vided in [46] and [47]. The individual terms in the summation
over must be matched term by term, by considering the or-
thogonality of and . By substitution of the
above equations, all factors being functions ofare replaced by
a series of the associated Legendre functions, which are orthog-
onal functions in the interval .

VI. M ATRIX EQUATION SYSTEMS

Finally, the equations used to determine the unknown coeffi-
cients constitute an infinite system of coupled linear equations
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and the unknown coefficients can be solved for from the fol-
lowing matrix equation systems:

and respectively (19)

Here, is the matrix of the unknown coefficients to be de-
termined, is the constant matrix in which the integrals of
source currents are involved, and and are the ma-
trices of constant elements obtained from the functional expan-
sions. For an -layered spheroidal structure, if the truncation
number of the summation overis chosen as , which means
that is taken as as an approxi-
mation to the infinite summation for a given, the matrices in
(19) can be expressed subsequently.

A. Matrix

The matrix in the left-hand side of (19) is found in its explicit
form to be

...

...

(20)

where the element matrices are defined as

...

...

for

and

...

...

for

B. Matrix

In the similar fashion, the first matrix in the right-hand side
of (19) is expressed explicitly as

...
(21a)

where the element matrices are given in (21b), shown at the
bottom of the following page, where is the zero matrix; the
sub-matrices are given for by

and for by

and the sub-matrices are derived for as

and for as



538 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 3, MARCH 2001

In the above equations, . Details
of , , , and (here

, or , and denotes the location of the field point)
in different cases are provided in the Appendix.

C. Matrix

The second matrix in the right-hand side of (19) is expressed
as

...
(22a)

where the element matrices are defined for the case where the
source is located in the out region ( ) as

(22b)

for the case where the source is located in one of the interme-
diate layers ( ) as

(22c)

and for the case where the source is located in the inner region
( ) as

In the above equations, is the zero matrix,
. Details of , ,

, and (here, , , or , and
denotes the location of the source point) in different cases are
provided in the Appendix.

(21b)
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D. Matrix

The last matrix employed in the right-hand side of (19) is
defined as follows. In the case that the source located in the outer
region ( )

for (23a)

and

for (23b)

In the case that the source is located in the intermediate region
( )

for (23c)

and

for (23d)

In the case that the source is located in the inner region ( )

for (23e)

and

for (23f)

where “0” is the zero matrix and

...

...

In (20)–(23f), for each specifiedvalue, each or con-
tains rows for an -layered spheroidal structure.
Therefore, there are sets of unknowns that are of
infinite number and coupled to each other [the- and -com-
ponents derived from (5a) and (5b)]. In principle, by making

sufficiently large, an adequate number of relations satisfied by
unknown coefficients are formulated and the unknown coeffi-
cients can be determined explicitly. However, it is indicated by
Asano and Yamamoto [1] that a sufficient computational accu-
racy can be achieved by choosing a proper truncation number
that can, as suggested by Sinha and MacPhie [2], be taken as

. In other words, there exit
scalar unknowns (or vector unknowns) for each of the afore-
mentioned equations. Assuming that the indexin the equa-
tions is taken as , we can determine these

scalar unknowns (or the vector unknowns)
uniquely.

VII. D ISCUSSIONS ANDCONCLUSION

In this paper, the DGFs in multilayered spheroidal structures
have been formulated in terms of these appropriate spheroidal
vector wave eigenfunctions ( , , , and

) and coordinate vectors , and . The representation
and formulation of DGFs in the spheroidal coordinates have
been made in a different eigenfunction expansion, as compared
with those conventional formulations in planar, cylindrical, and
spherical coordinates. The nonsolenoidal term of the electric
DGF has been extracted by following the same procedure given
by Tai [6]. The unknown coefficients of the scattering DGFs
can, even coupled to each other, be determined from the matrix
equation systems using the functional expansion technique. The
scattering coefficients of the Green’s dyadic for various cases
of source and field locations have been provided. Although
the determination of these matrix-formed coefficients has been
provided in close form in this paper, it should be noted here
that the integrals of source currents are involved in of
(23a)–(23f) and the unknowns cannot be obtained analytically
from the equations without the integrals of source currents.
This is different from the spherical case, where the scattering
coefficients are independent of integrals of source currents
and decoupled from each other. However, for a given source
excitation in a spheroidal structure, the distribution is known
and the source point does not appear after the integration over
the whole source region.

Besides the lack of orthogonality of spheroidal vector wave
functions, the very complicated calculation of the spheroidal an-
gular and radial harmonics is another difficulty in obtaining the
analytical solutions in spheroidal structures. With the develop-
ment of computer facilities and the appropriate method and rou-
tine of calculation [48], the tabulated values of spheroidal an-
gular and radial functions can be easily obtained and more ana-
lytical solutions in spheroidal structures can be found directly by
using the presented Green’s dyadic. Applications of the DGFs
in spheroidal structures presented here can be found from many
practical problems such as the EM waves inside and outside a
stratified prolate dielectric radome utilized to protect airborne
or satellite antennas from the environmental effects [49], handy
phone radiation near the layered spheroid-shaped human head
[46], [47], and rainfall attenuation of microwave signals due to
oblate raindrops [50]. Some numerical results about the appli-
cations of the formulated DGFs will be presented in part II of
this paper.
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APPENDIX

Subsequently provided are the detailed expressions of
, , , and (where

and , respectively, and and )
involved in (21a)–(22c)

(A-1a)

(A-1b)

(A-1c)

(A-1d)

Here, for and , for and
, for . The closed forms of ,

, and are pro-
vided in [46] and [47].
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